Warning: Creating default object from empty value in /hermes/bosnacweb04/bosnacweb04ai/b1550/ipg.lantanasolutionsbh98965/fincyclopedia/wp-content/plugins/independent-core/admin/ReduxCore/inc/class.redux_filesystem.php on line 29 Geometric Brownian Motion – Fincyclopedia
[wpdreams_ajaxsearchpro id=44 ]

Derivatives


[addtoany]
Notice: Undefined variable: myString in /hermes/bosnacweb04/bosnacweb04ai/b1550/ipg.lantanasolutionsbh98965/fincyclopedia/wp-content/themes/independent/template-parts/post/content-single.php on line 41

Geometric Brownian Motion


A process that reflects the time-evolution of an asset price. It is a stochastic process commonly used in finance to describe the evolution of traded assets over time. In the realm of derivatives, it is used for European style options and stock prices. In a mathematical form, it is expressed by the stochastic differential equation (SDE):

SDE-GBM

Where: α denotes the drift and γ denotes the volatility of the geometric Brownian motion process x(t).

This process is a continuous-time stochastic process in which the logarithm of the randomly varying value (e.g., a price) follows a Brownian motion (BM). Specifically, it is a non-negative variation of Brownian motion. When a Brownian Motion is geometric, the returns from the an asset trading in an active market (a stock) are compounding and stock prices cannot be negative- i.e., cannot drop below zero due to the nature of the issuers (limited liability corporations). Similar to its original version, the Brownian motion, it is a Markov process: “the future given the present state is independent of the past”

It is known for as exponential Brownian motion or for short as GBM.


[related_posts_by_tax title="See also" posts_per_page="10" taxonomies="post_tag"]

[pt_view id=78ecc7bubm]
[su_box title="Watch on Youtube" style="soft" box_color="#f5f5f5" title_color="#282828" radius="2" class="" id=""][su_row class=""][su_column size="1/1" center="yes" class=""] [/su_column][/su_row][/su_box]
Remember to read our privacy policy before submission of your comments or any suggestions. Please keep comments relevant, respectful, and as much concise as possible. By commenting you are required to follow our community guidelines.

Comments


    Leave Your Comment

    Your email address will not be published.*